APPENDIX

Appendix 9-1 – Project Level Summary	2
Appendix 9-2 – A1-A3 Calculations	3
Appendix 9-3 – A4 Calculations	4
Appendix 9-4 – A5 Calculations	5
Appendix 9-5 – C1-C4 Calculations	6
Appendix 9-6 – Operational Energy	7
Appendix 9-7 – Coillte Biomass Emissions	8

													Carbo	on per lif Decarbo	e cycle s nised*	tage										
					U	pfront C	arbon																		lufe b	and a second
		Pre- construction			Pr	oduct			С	onstruct	ion	In Use			Operational User Carbon Carbon		User Carbon	End of Life			the construction works and life cycle					
		A0	A	1	ŀ	\2	A	3	A4	A	5	E	31	B2-B3	B4		B5	B6	B7	B8	C1	C2	С3	C4	D1	D2
Asset		Pre-construction stage (Nonphysical process before construction, preliminary studies, tests and design	Raw Material Supply Product stage <u>excl.</u> <u>sequestered</u> <u>biogenic</u> <u>carbon</u>	Raw Material Supply Sequestered biogenic carbon within installed materials/ products	Transport Product stage <u>sect.</u> <u>secuestered</u> <u>blogenic</u> <u>carbon</u>	Transport Sequestered biogenet carbon within installed materials/ products	Manufacturing Product stage sed. sequentered biogenic carbon	Manufacturing Sequentered begenic carbon within installed materials/ products	Transport to and from site	A5.1-A5.3 Pre- construction Demolition, Construction Activities and Waste Management	A5.4 Transport of construction workers	B1.1 In-use material emissions and removals (release from materials / reabsorbtion into products)	B1.2 In-use fugitive emissions (refrigerants) leakage	82-83 Maintenance and repair	B4.1-84.2 Replacement of construction products, components, systems and industrial systems	Refurbishment/ planned changes sext. sequestation (where relevant)	Refurbishment/planned changes-related <u>Sequestered</u> <u>Biogenic carbon</u> (where relevant)	86.1-86.3 Operational Energy use	87.1-87.3 Operational Water use	88.1-88.3 User activities (transport of persons to and from asset, goods associated with activities for intended building use, user activities associated with civil engineering works)	Deconstruction/demolition process	Transport to wate processing facilities	Waste processing for reuse, recycling and/or energy recovery and disposal	Waste disposal	Potential net benefits/loads from reuse, recycling, energy recovery and/or other recovery	Potential benefits/Joads from esported utilities
Asset Totals	tCO2e	0			8	3,880			86	56	51	0	0	0	0	0	0	424,320	0	874,094	58		8		0	0

Appendix 9-1 – Project Level Summary

Total Upfront Carbon	tCO2e	9,527
Total In Use Carbon	tCO2e	-
Total Operational Carbon	tCO2e	424,320
Total User Carbon	tCO2e	874,094
Total End of Life Carbon	tCO2e	66
Total Beyond Scope Carbon	tCO2e	-
Asset Total	tCO2e	1,308,007

*Interpreted from RICS¹

¹ Whole Life Carbon Assessment for the Built Environment, 2nd Edition, RICS Professional Standard (2023) available at: Whole life carbon assessment (WLCA) for the built environment (rics.org) Accessed: December 2023

Material	Quantity of Materials (Tonnes)	ICE Database V3.0 Embodied Carbon (kgCO2e/kg) ²	Emissions (tCO2e)	ICE Database V3.0 Description	ICE DB V3.0 Notes
Steel	3,200	2.46	7,872	Steel, Plate	World average steel. A flat steel sheet rolled on a hot rolling mill. It further processed into finished products by the manufacturers. Hea structural steels, shipbuilding, pipes, pressure vessels, boilers, heav Typical thickness between 2 to 20 mm. The maximum width is 1860 e.g. for blast furnace slag and other co-products. The influence of sy 3 to 7% lower GWP. Contact Worldsteel for more information. At a -1.16 kg CO2e per kg ('-' magnitude is a benefit, '+' magnitude a burk kg CO2e per kg.
Crush ad Stan a	2,000	0.070	227	Stene Conord	
Crushed Stone	3,000	0.079	237	Stone, General	ICE database average
Concrete*	1,920	0.138	265	Mpa	Assumed 360 kg cementitious content per m3 concrete.
Rebar	200	1.99	398	Steel, Rebar	World average steel. For European rebar see seperate data. A steel can be found on the market for direct use or is further processed in product is used to strengthen concrete in highway and building con- rod process. System expansion was used on the steel, e.g. for blast influence of system expansion to the GWP for steel products is 3 to information. At an EOL recovery rate of 85%. Module D impact of -C magnitude a burden). This gives a net life cycle inc Mod D, of 1.2 kg
Cable	30	2.71	81	Copper, EU Tube & Sheet	EU production data, estimated from Kupfer Institut LCI data. 37% re World average data is expected to be higher than these values.
Rockwool Insulation	20	1.12	22	Rockwool	Cradle to grave
Refractory**	10	0.45	5	Brick, Single Brick	Average UK brick weighs 2.13 kg per brick [Source: The Brick Develo
Total	8,380		8,880		

Appendix 9-2 – A1-A3 Calculations

*RICS recommended C32/40 in-situ ready-mix for piling, foundations and structural concrete³ **ICE single brick factor used as proxy

² Circular Ecology Embodied Carbon – The ICE Database V3.0 (2019) available at: Embodied Carbon Footprint Database - Circular Ecology Accessed: December 2023

³ Whole Life Carbon Assessment for the Built Environment, 2nd Edition, RICS Professional Standard (2023) available at: Whole life carbon assessment (WLCA) for the built environment (rics.org) Accessed: December 2023

CLIMATE 9

can be found on the market in sheets and is avy plate is used in a large number of sectors: y metal structures, offshore structures etc. 0 mm. System expansion was used on the steel, ystem expansion to the GWP for steel products is in EOL recovery rate of 85%. Module D impact of rden). This gives a net life cycle inc Mod D, of 1.3

reinforcing bar is rolled on a hot rolling mill. It to finished products by the manufacturers. This struction also as primary product for the wire furnace slag and other co-products. The 7% lower GWP. Contact Worldsteel for more 0.79 kg CO2e per kg ('-' magnitude is a benefit, '+' c CO2e per kg.

ecycled content (the 3 year world average).

pment Association].

Appendix 9-3 – A4 Calculations

Material	Mode of Transport	Quantity of Material (Tonnes)	Scenario	Distance (km)	Tonnes.km*	Emission Factor Outward (kgCO2e/tonne.km)	Empty Running Factor**	Emission Factor Return (kgCO2e/tonne.km)	Emissions (tCO2e)
Stool	Road	3200	National	120	384 000	0.09696	/120/	0.096957467	52
	Nodu	5200		120	384,000	0.09090	4370	0.090937407	55
Crushed Stone	Road	3000	Locally-General	50	150,000	0.09696	43%	0.096957467	21
Concrete	Road	1920	Locally-Concrete	20	38,400	0.09696	100%	0.096957467	7
Rebar	Road	200	National	120	24,000	0.09696	43%	0.096957467	3
Cable	Road	30	National	120	3,600	0.09696	43%	0.096957467	0
Rockwool Insulation	Road	20	Regional	80	1,600	0.09696	43%	0.096957467	0
Refractory	Road	10	Regional	80	800	0.09696	43%	0.096957467	0
		<u>.</u>						Total	86

*tonne.km is a measurement of quantity and traffic of

transportation

**based on RICS default baseline for UK⁴

Emissions factors: DEFRA, UK Government⁵

⁴ Whole Life Carbon Assessment for the Built Environment, 2nd Edition, RICS Professional Standard (2023) available at: Whole life carbon assessment (WLCA) for the built environment (rics.org) Accessed: December 2023

⁵ Department for Environment, Food and Rural Affairs (DEFRA), (2022). UK Government GHG Conversion Factors for Company Reporting, 2022. Available at: Greenhouse gas reporting: conversion factors 2022 - GOV.UK (www.gov.uk) Accessed: March 2023

Appendix 9-4 – A5 Calculations

A5.1	A5.2	A5.3	A5.4*	Total
203.035	232.04	126	0	561
*Not calculated				

A5.1

Area (m2)**	Emission Factor (kgCO2e/m2)***	tCO2e
5,801	35	203

** From Development Plan (D1 = 2,963sqm, D2 = 2,563 sqm, D3 = 275 sqm

*** RICS 2023 baseline assumption⁶

A5.2

Area (m2)**	Emission Factor (kgCO2e/m2)***	tCO2e
5,801	40	232

** From Development Plan (D1 = 2,963sqm, D2 = 2,563 sqm, D3 = 275 sqm

*** RICS 2023 baseline assumption

A5.3

Material	Emissions (tCO2e) (from A1-4 and C1-4)	Waste Rate (%)***	tCO2e
Steel	7929	1%	79
Crushed Stone	261	10%	26
Concrete	274	5%	14
Rebar	402	1%	4
Cable	82	1%	1
Rockwool Insulation	23	7%	2
Refractory	5	6%	0
		Total	126

*** RICS 2023 baseline assumption

⁶ Whole Life Carbon Assessment for the Built Environment, 2nd Edition, RICS Professional Standard (2023) available at: Whole life carbon assessment (WLCA) for the built environment (rics.org) Accessed: December 2023

Appendix 9-5 – C1-C4 Calculations

C1		
A5.2 Emissions (ICO2e)	Scenario assumption.	CI Emissions (ICO2e)
232	BAU	58.01

*RICS BAU scenario proportion applied⁷

C2-C4

Material	Tonnes	Reuse***	Recycling***	Incineration with/without energy from waste***	Disposal (landfill and losses)***	Landfill Emission Factor (kgCO2e/Tonne)	Recycling Emission Factor (kgCO2e/Tonne)	tCO2e
Steel	3,200	15%	71%	0%	14%	1.2643491	0.984911723	3
Crushed Stone	3,000	0%	97.5%	0%	2.5%	1.2643491	0.984911723	3
Concrete**	1,920	0%	97.5%	0%	2.5%	1.2643491	0.984911723	2
Rebar	200	0%	98%	0%	2%	1.2643491	0.984911723	0
Cable	30	0%	50%	0%	50%	1.2643491	0.984911723	0
Rockwool Insulation	20		<1%		99%	1.2643491	0.984911723	0
Refractory	10	<1%	97.5%	0%	2.5%	1.2643491	0.984911723	0
Total	8,380							8

**RICS recommended C32/40 in-situ ready-mix for piling, foundations and structural concrete

***RICS default end-of-life routes

Emissions factors: DEFRA, UK Government⁸

⁷ Whole Life Carbon Assessment for the Built Environment, 2nd Edition, RICS Professional Standard (2023) available at: <u>Whole life carbon assessment (WLCA) for the built environment (rics.org)</u> Accessed: December 2023

⁸ Department for Environment, Food and Rural Affairs (DEFRA), (2022). UK Government GHG Conversion Factors for Company Reporting, 2022. Available at: Greenhouse gas reporting: conversion factors 2022 - GOV.UK (www.gov.uk) Accessed: March 2023

Appendix 9-6 – Operational Energy

Baseline Year Operational Energy

Source	Value	Unit	Unit Conversion Factor	Energy (TJ)	Emission Factor**	Emissions tCO2e
Diesel	9	TJ	0.000037	9	73.30000	657
LPG	2	ΤJ	0.000025	2	63.69000	157
Gas	119	TJ	0.0036	119	56.66000	6,731
Bark	655	Tonnes	0.0058	4	40.58114	27
Purchased Wood Fuel	59,441	Tonnes	0.0106	632	40.58114	2,412
Chip fines	26,265	Tonnes	0.0042	111	40.58114	1,066
Sander Dust + Trim Waste	24,639	Tonnes	0.0164	405	40.58114	1,000
Electricity*	394	TJ	0.000036	394	92.22000	36,353

*calculated from 2% of daily electricity = 6,000kWh

**SEAI conversion factors⁹

Assessment Year Operational Energy

Source	Value	Unit	Unit Conversion Factor	Energy (TJ)	Emission Factor **	Emissions tCO2e
Diesel	9	TJ	0.000037	9	73.3	657
LPG	2	TJ	0.000025	2	63.69	157
Gas	0	TJ	0.0036	0	56.66	9
Bark	1,098	Tonnes	0.0058	6	40.58114	45
Purchased Wood Fuel	99,604	Tonnes	0.0106	1,058	40.58114	4,042
Chip fines	44,011	Tonnes	0.0042	185	40.58114	1,786
Sander Dust + Trim Waste	41,286	Tonnes	0.0164	679	40.58114	1,675
Electricity*	402	TJ	0.000036	402	92.22	37,080

*calculated from 2% of daily electricity = 6,000kWh

**SEAI conversion factors

⁹ Sustainability Energy Authority of Ireland (SEAI) Conversion and Emissions Factors (2023) available at: Conversion Factors | SEAI Statistics | SEAI Accessed: December 2023

Appendix 9-7 – Coillte Biomass Emissions

Current Operations and Proposed Development

			Tonnes of Wood from		tCO₂e from Coillte
Source	Tonnes of Wood	% from Coillte	Coillte Forests	tCO2e/Tonne wood	Forests
Current Operations	111,000	50%	55 <i>,</i> 500	0.0104	575
Proposed Development	186,000	70%	130,200	0.0104	1,349

Coillte Group Activity Data – Annual Report 2022

			Emissions Based on % Revenue
	Revenue (€'000)	% Revenue	(tCO ₂ e)
Group	478,722	100%	70,813
Land	4,979	1%	736
Forest	139,701	29%	20,663
Medite Smartply	334,092	70%	49,414

Emissions from Forests and Land (tCO ₂ e)	Wood Removals from publicly-owned Forests (Tonnes)	tCO2e/Tonne Wood
21,399	2,065,000	0.01

